C	ours	e Cod	e			Co	urse T	itle			L	T	P	Credits	3
									_		3	1	0	4	
AS	H-M	AT-101	A		En	gineeri	ng Matl	hematic	s-I		CIE	Sl	EE	Total	
											40	6	0	100	
Cours	se O	utcom	es												
CO1	Uı	ndersta	nd the b	oasics of	f matric	es and	solve th	e syster	n of lin	ear equa	tions.				
CO2	Ut	tilize th	e conce	pt of Ei	igen Va	lues and	d Eigen	Vector	s in mat	trix tran	sformatio	ns.			
CO3	Aı	pply the	conce	pts of d	ifferent	ial calcu	ılus in f	finding	area and	d curvat	ure.				
CO4	Ut	tilize th	e funda	mentals	of diff	erential	calculu	1S.							
Course	e Ou	itcomes	(CO)	to Prog	ramme	Outco	mes (P	O) mar	ping (s	cale 1:	low, 2: N	1ediu	m, 3:	High)	
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12	
CO	1	3	3	2	3	-	1	-	-	1	-	-		1	
CO	2	3	3	3	2		1			1				1	
CO	2	3	3	3	2	-	1	-	-	1	-	-		1	
CO	3	3	2	1	1	_	1	-	_	1	_	_		1	
CO	4	3	2	1	1	-	1	-	-	1	-	-		1	
		2	2.5	1 = =	1 = =		_			4					_
Avg	5	3	2.5	1.75	1.75	-	1	-	-	1	-	-		1	

Unit-1: Matrices and System of Linear Equations

Contact Hours: 10

Rank of a matrix by Echelon form and Normal form, Inverse of matrices by Gauss-Jordan method; Linearly independent and dependent vectors; System of linear equations; solving system of Homogeneous and Non-Homogeneous equations; Consistency of systems of linear equations using rank, Gauss elimination method.

Unit-2: Eigen Values and Eigen Vectors

Contact Hours: 10

Eigen values and Eigen vectors and their properties, Linear Transformation and Orthogonal Transformation: Diagonalization of a matrix; Cayley-Hamilton theorem(without proof); application of Cayley-Hamilton theorem to find inverse and power of a matrix; Quadratic forms and Nature of the Quadratic forms; Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

Unit-3: Differential Calculus-I

Contact Hours: 12

Indeterminate form, Taylor's and Maclaurin's series, extreme values of a function, Asymptote, Curvature, Radius of Curvature for Cartesian, parametric and polar curves, Center of Curvature and Chord of Curvature, Tracing of Cartesian and Polar Curves (Standard Curves), Rolle's theorem, Lagrange's Mean value theorem and Cauchy's Mean value Theorem.

Unit-4: Differential Calculus-I I

Contact Hours: 12

Beta and Gamma functions with properties, Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Double integral: change of order of integration, Triple integral, Application to area and volume using double and triple integral.

Textbooks:

- 1. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43e, 2014.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 9e, John Wiley & Sons, 2006.

- 1. N. P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 2. Ramana B. V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 2017.

(Course	Code			Engineering Chemistry 3	Credits								
											3 1 0 CIE SEE 40 60 ality parameters, and the ion methods, along with al contexts. Ons of spectroscopic technoles, alternative solvents, al sustainability. v, 2: Medium, 3: High) PO11 PO12 PS01 - 2 - 2	4		
A	SH-CH	E-108A	A			Engineering Chemistry 3	Total							
									Try CIE SEE 7	100				
Cour	se Out	comes												
CO1								purities	s, key v	vater qua	lity para	meters,	and th	ne methods
								0 1					•	
CO2													ng wit	h the types
CO3													nic tec	hniques
COS	l On	ucistan	d the ru	indame	itai piin	cipies,	iiisti uiii	Ciitatioi	ii, aiiu a	ppneano	nis or spe	CHOSCO	pic icc	illiques.
CO4	Ex	plore tl	he prin	ciples a	nd app	ly vari	ous gre	en che	mistry	techniqu	es, alter	native	solvent	s, and the
	chei	nical st	ructure	of poly	mers in	industr	ial proc	esses aı	nd envii	onmenta	ıl sustain	ability.		
Cours	se Outc	omes (CO) to	Progra	mme O	utcom	es (PO)	mappi	ng (sca	le 1: low	, 2: Med	ium, 3	High))
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	D1 PSO2
CO1	_	_	_	_	_	_	_							
	3	3	2	3	1	2	2	-	-	-	-	2		
CO2	3	3	2	3	1	2	2	_	_	_	_	2		
					1					_				
CO3	3	3	3	3	2	2	2	-	-	-	-	3		
CO4	3	3	3	3	2	3	3	2	-	-	-	3		
Avg	3	3	2.5	3	1.5	2.25	2.25	2	-	_	-	2.5		

Unit-1: Water Treatment

Hardness, types of hardness, units and interconversions of units, estimation of hardness by EDTA method, alkalinity & its determination, numerical problems based on EDTA method & alkalinity, scale and sludge formation, disadvantages, and its prevention. Water softening methods-Lime-Soda process, ion-exchange method, desalination of water - reverse osmosis and electrodialysis, related numerical problems based on Lime-Soda process.

Contact Hours: 10

Contact Hours: 11

Unit-2: Fuels, Combustion and Corrosion

Fuels and Combustion: Definition, classification (solid fuels, liquid fuels, gaseous fuels) characteristics of a good fuel. Calorific value, gross and net calorific value, determination of calorific value by Bomb Calorimeter, ranking of coal, analysis of coal by proximate and ultimate analysis method, Flash Point and Fire Point of the liquid fuel. Numerical problems.

Corrosion: Introduction, classification, dry or chemical corrosion, wet corrosion or electrochemical corrosion, galvanic corrosion, differential aeration corrosion, pitting Corrosion, waterline corrosion, stress corrosion. Factor affecting corrosion. Corrosion control by proper designing, sacrificial anodic protection method, protective coating.

Unit-3: Spectroscopic Technique and Application

Introduction, types, principles of Spectroscopy and selection rule, electronic spectroscopy (UV-Visible spectroscopy)- Lambert- Beer Law, Different electronic transition levels, principle, instrumentation, and applications of UV spectroscopy. Fluorescence spectroscopy, nuclear magnetic resonance (NMR) spectroscopy- shielding and deshielding of protons, chemical shift, applications of NMR spectrum (MRI).

Unit-4: Material Chemistry and Green Chemistry

Contact Hours: 10

Contact Hours: 10

Polymers: Introduction, classification, preparation, properties, and Industrial application of thermoplastic (Teflon, Polyethylene), thermosetting plastic (UF resin, Phenol Formaldehyde Resin), Polymeric composites, biodegradable polymer (PHBV) conducting polymer (polyacetylene), inorganic polymer (silicone), Environmental impact of polymers on society.

Green Chemistry: Introduction, twelve basic principles of green chemistry, use of alternative feedstock in biofuel production, various biodiesel production methods, alternative solvents used in green chemistry.

Text Books:

- 1. A Text Book of Engineering Chemistry, Shashi Chawla, Dhanpat Rai & Co., 2017
- Chemistry for Engineers, B K Ambasta, University Science Press, Laxmi Publications Pvt. Ltd., 2012
- 3. Engineering Chemistry, Jain & Jain, Dhanpat Rai Publishing Co., 2020
- 4. Engineering Chemistry, O G Palanna, McGrawHill, 2017

- 1. Chemistry in Engineering and Technology Vol. 1 & 2, J.C. Kuriacose, J. Rajaram, McGraw Hill Education, 2001
- 2. Instrumental Methods of Analysis, Willard Merritt, CBS, 2004
- Physical Chemistry, Peter Atkins, Julio de Paula, James Keeler, Oxford University Press, 2018

(Course	e Code				Co	ourse T	itle			L	T	P	Credits
											2	0	0	2
A	SH-HU	M-106	A		Basi	cs of C	ommun	ication	Skills		CIE	SE	EE	Total
											40	6	0	100
Cour	se Out	comes												
CO1		elop the	eir listei	ning ski	lls by p	racticin	g active	e listeni	ng tech	niques ar	nd overco	oming c	ommon	listening
CO2	Den	nonstrat	e speak	ing skil	lls in va	rious co	ontexts,	overco	ming co	mmunic	ation bar	riers		
CO3	Ana	lyse to	compre	hend m	ain idea	s and in	mplicati	ions eff	ectively	7.				
CO4	Proc		ar, effe	ctive w	riting ac	cross va	rious g	enres, a	pplying	strategie	es to avoi	d redur	dancy a	nd
Cours	se Outc	omes (CO) to	Progra	mme O	utcom	es (PO)	mappi	ng (sca	le 1: low	, 2: Med	ium, 3:	High)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2
CO1	-	-	-	-	-	-	-	1	3	3	-	3	-	-
CO2	-	-	-	-	-	-	-	2	3	3	-	3	-	-
CO3	-	-	-	-	-	-	-	3	2	3	-	2	-	-
CO4	-	-	-	-	-	-	-	2	1	3	-	3	-	-
Avg	-	-	-	-	-	-	-	2	2.25	3	-	2.75	-	-

Unit-1 Listening Skills

Types of Listening, Active Listening: Gathering the main idea, sequencing, Note-making, Summarizing, Paraphrasing, Asking questions, Barriers of Listening, Strategies for Effective Listening

Contact Hours: 06

Contact Hours: 06

Contact Hours: 06

Contact Hours: 06

Unit-2 Speaking Skills

Essentials of Speaking skills: Confidence, Brevity, pronunciation, appropriate vocabulary, Clarity, tone, pace, body language (gestures), facial expressions, Speaking in different situations: Everyday situations, Academic (in classroom, before seniors, teachers etc.), Public speaking, Participating in debates and discussions, Storytelling, Barriers to effective speaking, Strategies for Effective Speaking.

Unit-3 Reading Skills

Types of Reading: Skimming, Scanning, comprehending the main idea, understanding implications, analysing, Strategies for Effective Reading

- Flowers for Algernon by Daniel Keyes(Case Study)
- Of Studies by Francis Bacon(Essay)
- The Proposal by Anton Chekov(One Act Play)
- Toba Tek Singh by Saadat Hasan Manto(Short Story)

Unit-4 Writing Skills

Types of Writing: Descriptive, Narrative, Expository , Argumentative & Persuasive and Creative

Writing, Redundancy and cliché in Writing, Strategies for Effective Writing, Writing messages, mails, blogs, editorial, assignments, Critical reviews etc.

Text Books:

 Technical Communication Principles and Practice by Meenakshi Raman and Sangeeta Sharma by Oxford Publication

Reference Books:

- 1. On Writing Well. William Zinsser. Harper Resource Book. 2000.
- 2. Technical Communication. John Wiley. Wiley India Pvt. Ltd.
- 3. Communication Skills for Engineers by C. Muralikrishna and Sunita Mishra, Pearson Pub
- 4. Communication Skills Traning, Iantuhovsky, Createspace Independent Pub, 2015.

(Course	e Code				Co	urse T	itle			L	Т	P	Credits
											3	1	0	4
	BT-ECI	E-102A		Basi	cs of Ele	ectrical	and Ele	ectronic	s Engin	eering	CIE	SI	EE	Total
											40	6	0	100
Cour	se Out	comes									•	'	'	
CO1	Dei	monstra	te an ur	nderstar	nding of	the con	cepts o	f semice	onducto	or device:	S.			
CO2	Ma	ke use o	of AC f	undame	ntals an	d solve	series a	ınd para	ıllel AC	circuits.				
CO3	Un	derstand	d and w	ork witl	h single	phase t	ransfori	ners an	d DC M	lotors.				
CO4	Dei	monstra	te and u	ındersta	ınding tl	he conc	epts of	semico	nductor	devices.				
Cours	se Outc	omes (CO) to	Progra	mme O	utcome	es (PO)	mappi	ng (scal	le 1: low	, 2: Med	ium, 3:	High)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2
CO1	3	3	2	2	1	-	-	-	-	-	-	1	-	-
CO2	3	3	2	2	2	-	-	-	-	-	-	1	-	-
CO3	3	2	2	1	2	-	-	-	-	-	-	1	-	-
CO4	3	2	2	1	2	-	-	-	-	-	-	1	-	-
Avg	3	2.5	2	1.5	1.75	-	-	-	-	-	-	1	-	-

Unit-1: Electric Circuits

Contact Hours: 12

DC Circuit Analysis: Electrical circuit elements (R, L and C), voltage and current sources, Laws: Ohm's law, voltage and current division rule, Kirchhoff's Current and Voltage laws, Series & parallel circuits, Star-Delta and Delta-Star conversions, Meshand Nodal Analysis.

Network Theorems: Superposition theorem, Thevenin's theorem, Norton's Theorem, duality, reciprocity theorem and maximum power transfer theorem.

Unit-2: AC Fundamentals & AC Circuit

Contact Hours: 11

AC signal; Average and RMS values of sinusoidal AC; polar & rectangular forms of representation of phasor quantities. Addition & subtraction of two or more sinusoidal quantities using the component resolution method/ phasors.

RLC Circuits: Steady-state AC response of R/L/C, RL, RC series and parallel circuits, P.F.; active, reactive & apparent powers.

Unit-3:Transformer and DC Motors

Contact Hours: 11

Single phase transformer (only qualitative analysis): Working Principle, Construction, Emf

equation, Losses in a transformer, Maximum efficiency condition.

DC motor characteristics: Constructional parts & principles of working of DC Machines, Generated and back EMF, Types of DC machines, Speed Control of DC shunt Motor, braking of dc motors, four quadrant operation of DC motor, applications.

Unit-4: Semiconductor Devices and Applications

Contact Hours: 10

PN Junction Diode: Active and passive components, Introduction of Semiconductors, doping, PN junction diode, breakdown, barrier potential, diode as a switch, Basic rectifier circuits: half wave and full wave, Zener diode, Voltage regulator using Zener Diode, Avalanche diode.

Bipolar Junction Transistor: Different types of transistors, Principle of Operation of transistor, Input and Output characteristics of Common Emitter, Common Base and Common Collector Configurations, Transistor as a switch and amplifier.

Text Books:

- 1. Charles K. Alexander, Matthew N. O. Sadiku, "Fundamentals of Electric Circuits", McGraw Hill Education, 6th Edition, 2019.
- 2. B.L. Theraja, A. K. Theraja, "A Textbook of Electrical Technology", S Chand Publication, 23rd Edition, 1959.
- 3. Vijay Kumar Garg, "Basic Electrical Engg: A complete Solution", Wiley India Ltd, 1st Edition, 2017.
- 4. S Salivahanan, N Naresh Kumar, "Electronics devices and circuits", McGraw Hill, 4th Edition, 2017.
- 5. Vincent Del Toro, "Electrical Engineering Fundamentals", Pearson, 2st Edition, 2015.
- 6. N N Bhargava, "Basic Electronics and Linear Circuits", McGraw Hill, 2nd Edition, 2017.
- 7. Joseph A. Edminister, "Schaum's Outline of Electric Circuits", McGraw Hill, 7th Edition, 2018.

- 1. Rajendra Prasad, "Electrical Engg. Fundamentals", PHI Pub, 1st Edition, 2017.
- 2. Millman, Halkias, "Integrated Electronics", TMH, 2nd Edition, 2017.
- 3. Boylestad, Nashelsky, "Electronic Devices & Circuit Theory", PHI, 11th Edition, 2015.

(Course	e Code				Co	urse T	itle			L	T	P	Credits
											1	2	0	3
	BT-ME	E-104A			Engi	neering	Graphi	cs and I	Design		CIE	S	EΕ	Total
											40	6	0	100
Cour	se Out	comes									•	•		
CO1	Drav	w orthog	graphic	projecti	ions of	an objec	ct using	approp	riate sc	ales.				
CO2		w project rence to				and reg	ular so	lid obje	cts havi	ng any s	pecified o	orienta	tion wi	th
CO3		ialize an				egular s	olid.							
CO4		ite deve						egular s	olid.					
CO5	Drav	w isome	tric pro	jections	and vio	ews of a	an objec	et.						
Cours	e Outc	omes (C	CO) to l		mme O	utcome			ng (scal	e 1: low,	2: Medi	ium, 3	High)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	01 PSO2
CO1	2													
CO1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	-	-
СОЗ	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	3	3	-	-	-	-	-	-	-	-	-	-	-
Avg	3	2.75	3	-	-	-	-	-	-	-	-	-	-	-

Content	
Unit-1: Introduction to Engineering Drawing and Orthographic Projection	Contact Hours: 9

Drawing instruments and their use, drawing conventions, dimensioning, types of lines, Scales: plain, diagonal, and engineering scales, First and third-angle systems of Orthographic Projection.

Projection of points in different quadrants.

Projection of Straight Lines: Projection of lines inclined to one plane and both planes, true length, inclination with reference planes, traces of a line.

Unit-2: Projection of Planes and Solids Contact Hours: 9

Projection of polygonal and circular lamina located in the first quadrant and inclined to one or both of the reference planes.

Classification of solids, Projection of solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane.

Unit-3: Sections of Regular Solids and Development of Lateral (Contact Hours: 9) Surfaces

Sections of Solids: Auxiliary views for the true shape of the sections of right regular solids and such as prism, cylinder, pyramid, and cone.

Development of the lateral surfaces for various right regular solids such as prism, cylinder, pyramid, and

cone.	
Unit-4: Isometric Projection	(Contact Hours: 9)
Isometric scales, isometric projections of simple and combination of solids. Co.	nversion of orthographic

Textbooks:

- 1. Bhatt N. D., Panchal V. M. and Ingle P. R., 2014, Engineering Drawing, Charotar Publishing House.
- **2.** Shah, M. B. and Rana B. C., 2008, Engineering Drawing and Computer Graphics, Pearson Education.

Other References:

projection to isometric view and vice versa.

- 3. Agrawal B. and Agrawal C. M., 2012, Engineering Graphics, TMH Publication.
- 4. Engineering Graphics and Design, A. P. Gautam and Pradeep Jain, Khanna Publishing House.
- 5. Narayana, K. L. and P. Kannaiah, 2008, Text book on Engineering Drawing, Scitech Publishers.

Note: Students are required to prepare drawings containing solutions to the problems under different units during the tutorial classes and also under their home assignments.

	Cours	e Code	2			Co	ourse]	Гitle			L	T	P	Credits
											0	0	2	1
	BT-AS	H-156 <i>A</i>	Λ		Basics	of Con	nmunic	ation S	kills La	b	CIE	S	EE	Total
											50	4	50	100
Cour	se Ou	tcomes	5								ı			
CO1		nonstrat ussions		tive spea	aking sl	kills thr	ough co	onversa	tions, e	xtempore	sessions	s, and	group	
CO2				ontent fr	om nev	vs, lecti	ures, an	d publi	c speec	hes.				
CO3	+.													
										bed textb				
CO4	Syn	thesize	written	respons	ses base	d on th	e analy	sis of v	ideo/au	dio recor	dings, le	ctures,	and te	xts
		tcomes	s (CO)	to Pro	gramr	ne Ou	tcomes	s (PO)	mappi	ing (sca	le 1: lov	v, 2: N	Aediu	m, 3:
High) PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PSC	01 PSO2
	101	102	103	104	103	100	107	100	10)	1010	1011	2	150	1 1302
CO1	-	-	-	-	-	-	-	3	3	3	-	-	-	2
CO2	-	-	-	-	-	-	-	2	3	3	-	-	-	3
CO3	-	-	-	-	-	-	-	3	2	3	-	-	-	3
CO4	-	-	-	-	-	-	-	2	3	3	-	-	-	2
Avg	-	-	-	-	-	-	-	2.5	2.75	3	-	-	-	2.5

- 1. Listening Comprehension practice through recorded/online news readings, lectures, public speeches
- 2. Speaking practices through Common Everyday Situations: Conversations and Dialogues
- 3. Jam sessions (Extempore)
- 4. Group discussion session
- 5. Reading practice sessions(Newspaper/Electronic/Prescribed Text books)
- 6. Writing Practices after listening, interpreting and analysing Video/Oral Recordings, lectures Power Point Presentations and after reading written/printed excerpts, essays, stories etc.

Note: Students must conduct at least four experiments covering all Cos.

Text Books:

1. Technical Communication Principles and Practice by Meenakshi Raman and Sangeeta Sharma by Oxford Publication

Reference Books:

- 1. On Writing Well. William Zinsser. Harper Resource Book. 2000.
- 2. Technical Communication. John Wiley. Wiley India Pvt. Ltd.
- 3. Communication Skills for Engineers by C. Muralikrishna and Sunita Mishra, Pearson Pub
- 4. Communication Skills Traning, Iantuhovsky, Createspace Independent Pub, 2015.

	Cours	e Code	e			Co	ourse T	Title			L	Т	P	Cree	dits
											0	0	2		1
	BT-AS	H-158 <i>A</i>	Λ		Eı	ngineer	ing Che	mistry	Lab		CIE	S	EE	Г	otal
											50	4	50		100
Cour	se Out	tcomes	3									1			
CO1	Ass	sess wa	ter qual	ity and i	ts suita	bility fo	or indus	trial an	d dome	stic purp	oses				
CO2	Ass	sess the	quality	and cor	nbustio	n prope	erties of	the giv	en fuel	sample.					
CO3	Ass	sess the	corrosi	on resis	tance of	f differe	ent meta	als and	alloys						
CO4	App	ly spec	troscop	ic techn	ique to	determ	ine the	required	d conce	ntration	n a sam	ole.			
CO5		derstano oilizatio	-	inciples	and cha	allenges	s involv	ed in sy	nthesiz	zing the p	olymeri	c mol	ecule	s and th	eir
CO6	Est	imate a	few ph	ysical/cl	hemical	proper	ties of	differen	t sampl	es/soluti	ons.				
CO7	Cal	culate t	he strer	gth of a	n acid	solution	using	a condu	ctomet	ric and p	H meter	appro	ach.		
Cour	se Out	tcomes	s (CO)	to Prog	gramn	ne Out	comes	(PO) 1	nappi	ng (scal	e 1: low	v, 2: N	/ledi	ium, 3:	High)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	12	PSO1	PSO2
CO1	3	3	2	3	2	2	2	_	-	-	-	2		-	-
CO2	3	3	2	3	1	1	2	-	-	-	-	2		-	-
CO3	3	3	2	3	2	2	2	-	-	-	-	2		-	-
CO4	3	3	3	3	2	2	3	-	-	-	-	3		-	-
CO5	3	3	3	3	2	3	3	-	-	-	-	3		-	-
CO6	3	3	3	3	2	2	2	_	_	-	-	2		-	-
CO7	3	3	3	3	2	2	2	-	-	-	-	2		-	-
Avg	3	3	2.5	3	1.85	2	2.2	-	-	-	-	2.28		-	-

1.	To determine the total hardness of given water sample by EDTA method.
2.	Determination of alkalinity of water sample.
3.	Determination of surface tension of given liquid by drop number method.
4.	Determine the viscosity of given liquid by using Ostwald's viscometer.
5.	Determination of chloride content in given water sample.
6.	Proximate analysis of a sample of Coal.
7.	To determine flash point & fire point of given fuel sample by Pensky -Marten's flash point
	apparatus.
8.	To determine the corrosion rate of metal surface by weight loss method.
9.	To determine the concentration of Allura Red Dye in soft drinks/ health drinks using UV
	Spectrophotometer.
10.	Determination of refractive index of given organic liquid by Abbe's refractometer.
11.	Determination of concentration of given sample of KMnO ₄ using spectrophotometer
12.	To prepare the sample of phenol formaldehyde (Bakelite).
13.	Determination of strength of given Hydrochloric acid solution by titrating it with NaOH
	solution conductometrically.
14.	Determination of strength of given Hydrochloric acid solution by titrating it with NaOH
	solution using pH meter.
15.	To prepare the sample of urea formaldehyde resin.
16.	Determination of viscosity of lubricating oil by Redwood Viscometer.
	·

Note: Students must conduct at least ten experiments covering the entire COS.

Text Books:

- 1. A Text book on Experiments and Calculation in Engineering Chemistry, S S Dara, S. Chand & Company Ltd., 2015
- 2. Essential of Experimental Engineering Chemistry, Shashi Chawla, Dhanpat Rai Publishing Co., 2020

- 1. Theory & Practice Applied Chemistry, O P Virmani, A K Narula, New Age Int. Pub., 2017
- 2. Engineering Chemistry, K Sesha Maheswaramma and Mridula Chugh, Pearson Education, $2015\,$

(Course	Code				Co	ourse T	Title			L	Т	P	Credits
											0	0	2	1
	BT-ECI	E-172A		Basic	es of El	ectrical		ectronic	s Engir	neering	CIE	SE	EE	Total
							Lab				50	5	0	100
Cours	se Outc	omes									I			
CO1	Ap	ply basi	ic electr	rical law	s & the	orems t	o solve	DC cir	cuits.					
CO2	Ma	ke use	of AC f	undame	ntals &	basic n	nathema	atical pi	rinciple	s to solve	e AC circ	cuits.		
CO3				l S.C. te motors.	sts, load	d vs. eff	ficiency	calcula	ition of	single-p	hase trar	sform	ers and	speed
CO4		amine tl racteris			istics of	fvariou	s diode:	s such a	s p-n d	iode, Zer	ner diode	and in	iput/ou	put
Cours	e Outc	omes ((CO) to	o Progr	ramme	Outco	omes (PO) m	appin	g (scale	1: low,	2: Me	dium,	3: High)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO	1 PSO2
CO1	3	3	2	2	1	-	-	-	-	-	-	1	-	-
CO2	3	3	2	2	2	-	-	-	-	-	-	1	-	-
CO3	3	2	2	1	2	-	-	-	-	-	-	1	-	-
CO4	3	2	2	1	2	-	-	-	-	-	-	1	-	-
Avg	3	2.5	2	1.5	1.75	-	-	-	-	-	-	1	-	-

- 1. To verify KVL and KCL.
- 2. To verify the Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response characteristics of a series R-L-C circuit on CRO and determine BW, resonant frequency & maximum current.
- 6. To study frequency response characteristics of a parallel R-L-C circuit on CRO and determine resonant frequency & minimum current.
- 7. To perform O.C. and S.C. tests on a single-phase transformer to determine core losses and copper losses.
- 8. To perform a direct load test on a single-phase transformer and plot load v/s efficiency characteristics.
- 9. To perform speed control of the DC shunt motor.
- 10. Identification, Specifications, Testing of R, L, C Components (Color Codes), Bread Boards, Diodes, BJTs, JFETs, MOSFETs, Power Transistors, SCRs and LEDs.
- 11. To study the operation of Digital Multi Meter, Function / Signal Generator, Regulated Power Supply (RPS), Cathode Ray Oscilloscopes/ Digital storage oscilloscope; Amplitude, Phase and Frequency measurement of Sinusoidal Signals on CRO/DSO.
- 12. To study & perform the Experimental Verification of V-I characteristics of PN- diode in forward and reverse bias & study of various parameters of diode like threshold voltage and breakdown voltage etc.
- 13. To study & perform the Experimental Verification of V-I characteristics of Zener Diode.
- 14. To study & perform the experimental verification of the input and output characteristics of BJT in common-base configuration & calculate all its parameters.
- 15. To study & perform the experimental verification of the input and output characteristics of BJT in common-emitter configuration & calculate all its parameters.

Note: Students must conduct at least ten experiments covering all COs.

	Cours	e Cod	e			Co	ourse T	Title			L	T	P	Credits
											0	0	2	1
	BT-EC	E-174 <i>A</i>				Interne	et of Th	ings La	b		CIE	SI	EE	Total
											50	5	0	100
Cour	se Ou	tcomes	S											
CO1	Get	familia	rize wit	h variou	ıs electr	ical par	rameter	-measui	ring equ	iipment.				
CO2	Exp	lore the	use of	Arduino	board									
	LAP		use 01 1	riduino	oouru.									
CO3	Exp	lore IO	Γ device	es desig	ned to o	perate	within	cloud fi	amewo	rks.				
CO4	Use	Arduin	o and E	SP 32 to	interfa	ice vari	ous sen	sors/de	vices.					
Cour	se Ou	tcomes	(CO)	to Pro	gramn	ne Out	comes	(PO)	mappi	ng (scal	e 1: low	, 2: N	Iedium	, 3:
High	-													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
	3				2			I		1				
CO1	3	2	2	-	3	-	-	-	2	2	-	2	-	-
CO1	3	3	2	2	3	-	-	-	2	2	-	2	-	-
CO2	3	3	2	2	3	-	-	-	2	2	-	2	-	

1.	Measure different electrical parameters of a circuit with various measuring equipment.
2.	Install the Arduino IDE and configure it to control the flashing of an LED.
3.	To connect and control a buzzer using Arduino for sound output.
4.	Display a character string on the LCD using Arduino with and without I2C.
5.	Integrate an ultrasonic sensor with Arduino to explore distance sensing capabilities.
6.	Experiment with IOT by exploring the interconnection of devices and systems.
7.	To explore the ESP 32/NodeMCU8266 in basic IOT solutions.
8.	Setup an LED interface with ESP32/NodeMCU8266.
9.	Interface LCD using ESP32/NodeMCU8266 with and without I2C.
10.	Control the switching of LED using a mobile phone and ESP32/NodeMCU8266.

Note: Students must conduct at least eight experiments covering all the COs.

- 1. Internet of Things, 2e, 2020, Shriram K. Vasudevan, Abhishek S. Nagarajan, R. M. D. Sundaram, Wiley India.
- 2. Internet of Things: Architecture and Design Principles, 2e, 2022, Raj Kamal, McGraw Hill.

- 3. Internet of Things A Hands-On-Approach, 2015, Arsheep Bahga, Vijay Madisetti, Orient Blackswan Private Limited, Delhi.
- 4. The Internet of Things: Do-it-Yourself at Home Projects for Arduino, Raspberry Pi, and Beagle Bone Black, 1e, 2015, Donald Norris, McGraw-Hill Education.

- 5. Internet of Things, 2e, 2020, Shriram K. Vasudevan, Abhishek S. Nagarajan, R. M. D. Sundaram, Wiley India.
- 6. Internet of Things: Architecture and Design Principles, 2e, 2022, Raj Kamal, McGraw Hill.
- 7. Internet of Things A Hands-On-Approach, 2015, Arsheep Bahga, Vijay Madisetti, Orient Blackswan Private Limited, Delhi.
- 8. The Internet of Things: Do-it-Yourself at Home Projects for Arduino, Raspberry Pi, and Beagle Bone Black, 1e, 2015, Donald Norris, McGraw-Hill Education.

Co	urse C	Code		Course Title							L	Т	P	Credits
											0	0	2	1
B 7	Γ-ME-1:	54A		E	nginee	ring Gr	aphics	and De	esign L	ab	CIE	S	EE	Total
											50	5	50	100
Course	Outco	mes												
CO1	Demo	onstra	te the u	sage of	CAD s	oftware	e.							
CO2	Use th	he ort	hograp	hic proj	ection t	o draw	views o	of the la	mina, r	egular so	olids, and	the se	ctions	of solids.
CO3	Draw	the s	urfaces	of regu	ılar soli	ds.								
CO4	Draw the isometric views of solids.													
Course Outcomes (CO) to Programme Outcomes (PO) mapping (scale 1: low, 2: Medium, 3: High))		
	P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
CO1	3	3				3	-	-	-	2	3	-	3	
CO2	3	3	3	3		2	-	-	-	3	3	-	-	
CO3 3 3 2 3 3 3 3														
CO4	3	,	2	3	2	3	-	-	-	2	2	-	2	
Avg	3	3	2.66	2.66	2.5	2.75				2.5	2.75		2.5	

Unit-1: CAD software: Review of graphic interface.	Contact Hours: 6
--	------------------

Layout of the software, standard tool bar/menus, most commonly used tool bars, navigational tools. Co-ordinate system and reference planes (HP, VP, RPP & LPP). Selection of drawing size and scale. Commands and creation of lines, co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line conventions, material conventions and lettering.

Unit-2: Computer Aided Engineering-Drawing Contact Hours: 18

Projection of planes and solids. Sections of regular solids. Development of the lateral surfaces of regular solids. Isometric projection.

Note: Students to keep a record of the computer printouts of their own work:

- 1. M. H. Annaiah, C. N. Chandrappa and B. Sudheer Premkumar, Computer Aided Engineering Drawing, 5e, New Age International Publishers.
- 2. T. Jeyapoovan, Engineering Graphics using AutoCAD 2000, Vikas Publishing House, 2015.
- 3. A Primer on computer aided engineering drawing, VTU, Belgam, 2007.
- 4. Kulkarni D. M., et. al. Engineering Graphics with AutoCAD, PHI, 2010.
- **5.** S. Trymbakaa Murthy, A Text Book of Computer Aided Machine Drawing, CBS Publishers, New Delhi, 2007.
- **6.** Goutarri Pohit and Goutam Ghosh, Machine Drawing with Auto CAD, Pearson Education, 2005.

Semester II

	Cor	ırse Cod	le			Co	urse T	itle			L	T	P	Credi	its	
											3	1	0	4		
	ASH-	-MAT-10	2A		En	gineerii	ng Math	nematic	s-II		CIE	SI	EΕ	Tota	ıl	
											40	6	0	100)	
C	ourse	Identify use of various measures of central tendencies in comprehensive manner.														
С	O1	Identify	use of v	arious 1	neasure	s of cer	ntral ten	dencies	in com	prehens	sive manı	ner.				
С	O2	Apply th	apply the basics of probability in solving problems.													
С	O3	Understand various properties of multi variable functions and partial differentiation.														
С	O4	Solve different types of ordinary differential equations.														
C	Course Outcomes (CO) to Programme Outcomes (PO) mapping (scale 1: low, 2: Medium, 3: High)															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1		012		
	CO1	3	3	2	3	-	1	-	-	1	-	-	1			
	CO2	3	3	3	2		1			1			1			
	COZ	3	3	3	2	-	1	-	-	1	-	-	1			
	CO3	3	2	1	1	-	1	-	_	1	-	-	1			
	CO ₄	3	2	1	1	-	1	-	-	1	-	-	1			
	A = 100	2	2.5	1 75	1 75		1			1			1			
	Avg	Avg 3 2.5 1.75 1.75 - 1 - 1 - 1 - 1														

Unit-1:Ordinary Differential Equations

Contact Hours:11

First order ordinary differential equations: Formation of ordinary differential equation, Exact Differential equations, reducible to exact differential equations, linear and Bernoulli's equations, Euler's equations, Equations not of first degree: Clairaut's equation.

Ordinary differential equations of higher order (up to 4th order): linear differential equations with constant coefficients, method of variation of parameters, Cauchy's and Legendre's linear differential equations.

Unit-2: Partial Differentiation

Contact Hours:11

Functions of two or more variables, Partial derivatives, Derivatives of composite and implicit functions, Change of variables. Homogeneous functions, Euler's theorem.

Taylor's and Maclaurin's series for functions of two variables (without proof), Maxima-Minima of functions of two variables, Lagrange's method of undermined multipliers. Differentiation under integral sign.

Unit-3: Measure of Central Tendencies and Dispersions

Contact Hours: 10

Measures of central tendency: Mean, Median, Quartiles, Mode, Geometric Mean and Harmonic Mean, Measures of Dispersion: Range, Quartile Deviation, Mean Deviation, Standard Deviation, Coefficient of variation, First four moments, skewness and Kurtosis.

Covariance of X and Y, Correlation: Karl Pearson's coefficient of Correlation, Rank Correlation, Regression: Regression line Y on X and X on Y, Coefficient of regression.

Unit-4: Probability and Probability Distributions

Contact Hours: 10

Introduction, Application of Additive and Multiplicative laws of probability, Dependent and Independent Events, Introduction of conditional probability, Baye's Theorem (Without proof) and its applications, Discrete and Continuous random variables and their properties, distribution functions, density and mass functions. Probability distribution: Discrete distribution (Binomial, Poisson), Continuous distribution (Normal), mean, variance and standard deviation of the distributions and their properties.

Text Books:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43th Edition, 2014.
- 2. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan, Chand & Sons, 12th edition, 2022.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10th Edition, 2011.

- N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint 2008.
- 2. BV Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2017.
- 3. W. Feller, An Introduction to Probability Theory and its Applications, Vol.1, 3'd Edition, Willey, 1968.
- 4. S. Ross, A First Course in Probability, 6th Edition Pearson Education India 2002.

Co	ourse Code				Co	urse T		L	T	P	Credits	,		
										3	1	0	4	
AS	H-PHY-104 <i>A</i>	1	Mecha	inics an	d Mech	anical p	roperti	es of M	aterials	CIE	S	EE	Total	
										40	(60	100	
Course	Outcomes													
CO1	Demonstra	te an u	ndersta	nding	of fund	lamenta	l mech	anics c	oncepts	to analy	ze me	otion,	forces, an	d
	trajectories	in phys	ical sys	tems.										
CO2	Apply cond	epts of	non-ine	ertial re	ference	frames	and rig	id body	mechan	ics to ana	lyze f	orces,	motion, an	d
	rotational d	lynamic	s in cor	nplex s	ystems.									
CO3	Interpret th	e types	of med	chanical	l vibrati	ions and	their	applicat	tions, the	e role of	Shock	wave	s in variou	ıs
	fields.													
CO4	Understand	ling the	mechar	nical an	d elastic	proper	ties of	materia	ls for en	gineering	applic	cations		
Course	Outcomes (CO) to 1	Progra	mme O	utcome	es (PO)	mappi	ng (scal	le 1: low	, 2: Med	ium, 3	: High	1)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12	
601										4				
CO1	3	3	2	2	1	1	1	1	1	1	1		2	
CO2	3	3	2	2	2	1	1	1	1	1	1		2	
CO3	3	2	2	3	2	2	1	1	1	1	1		2	
CO4	3	3	2	2	2	2	2	1	1	1	1		2	
Avg	3	2.75	2	2.25	1.75	1.5	1.25	1	1	1	1		2	

Unit-1: Mechanics of Particles

(Contact Hours: 10)

Review of Newtonian Mechanics: Equilibrium forces and free body diagram with example, Newton's laws, equations of motion in polar form, examples – Conservative and non-conservative systems – system of particles, Center of Mass.

Central Forces: Central Forces, Kepler's Law, trajectories in Gravitational systems, Satellite manoeuvres.

Unit-2: Non-Inertial Frames and Rigid Body Mechanics (Contact Hours: 10)

Non-inertial frames: Motion in non-inertial frames, Coriolis and Centrifugal forces, Weather systems, Foucault pendulum.

Rigid Body Mechanics: Independent Coordinates for a rigid body, Moment of inertia, radius of gyration, Parallel and perpendicular axis theorems, examples of moment of inertia of uniform bodies (rod, rectangular plane, ring, disc, and cylinder sphere), Polar moment of inertia, Euler angles – The Inertia tensor and Moment of Inertia – Principal Axis transformation, Introduction to three-dimensional rigid body motion.

Unit-3: Oscillations and Wave

(Contact Hours: 10)

Free Oscillations: Basics of SHM, derivation of differential equation for SHM, Mechanical simple harmonic oscillators (spring constant by series and parallel combination), Equation of motion for free oscillations, Natural frequency of oscillations.

Damped and Forced Oscillations: Theory of damped oscillations (derivation), over damping, critical & under damping (only graphical representation), quality factor; Theory of forced oscillations (derivation) and resonance, sharpness of resonance.

Shock waves: Mach number, Properties of Shock waves, Construction and working of Reddy shock tube, applications of shock waves, Numerical problems.

Unit-4: Mechanical and Physical Properties of Materials (Contact Hours: 10)

Mechanical properties : Concept of elasticity, plasticity, stress, strain, tensile stress, shear stress, compressive stress, strain hardening and strain softening, failure (fracture/fatigue), Hooke's law, different elastic moduli: Poisson's ratio, Expression for Young's modulus (Y), Bulk and β . Relation between Y, n and K, α modulus (K) and Rigidity modulus (n) in terms of Limits of Poisson's ratio.

Physical Properties: Density, specific heat, melting and boiling point, thermal expansion and conductivity, electrical and magnetic properties

Textbooks:

- 1. Engineering Physics-Gaur and Gupta-Dhanpat Rai Publications-2017.
- 2. Engineering Mechanics-MK Harbola-Cengage India Private Limited; 2nd edition-2012
- 3. Introduction to Mechanics -MK Verma-CRC Press; 1st edition-2009
- 4. Shock waves made simple- Chintoo S Kumar, K Takayama & KPJ Reddy- Willey India Pvt. Ltd.-2014.

Other References:

- 1. Introduction to Classical Mechanics: With Problems and Solutions-David Morin-1st Cambridge University Press; 1st edition-2008.
- 2. Physics-Robert Resnick, David Halliday, Kenneth S. Krane-Wiley; Fifth edition-2007
- 3. An Introduction to Mechanics-Daniel Kleppner,Robert J. Kolenkow-McGraw Hill Education-1st edition 2017
- 4. Ginsberg Engineering Dynamics-Cambridge University Press-2008)

.

	Course	Code				itle			L	Т	P	Credits			
											2	1	0	3	
A	SH-HU	M-105	A		Esse	entials o	of Engli	sh Lang	guage		CIE	S	EE	Total	
											40	(50	100	
Cour	se Out	comes										•			
CO1	Und	erstand	the spe	ech me	chanisn	n to ana	lyze an	d produ	ce accu	rate pror	unciatio	1S.			
CO2	App	ly vario	ous part	s of spe	ech whi	ile dem	onstrati	ng an u	ndersta	nding of	voice in	senten	e const	ruction.	
CO3	Exe	cute the	ir voca	bulary b	y using	g prefixe	es, suffi	xes, syr	nonyms	, antonyı	ns, one-v	vord su	bstituti	ons,	
		nomonyms, homophones, and technical jargon correctly. Use phrases, clauses, tenses, verb patterns and sentences correctly, while avoiding common errors.													
CO4	Use	Use phrases, clauses, tenses, verb patterns and sentences correctly, while avoiding common errors.													
Course Outcomes (CO) to Programme Outcomes (PO) mapping (scale 1: low, 2: Medium, 3: High)															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	PSO2	
CO1	-	-	-	-	-	-	-	1	3	3	-	2			
CO2		_	_		_	_	_	2	2	3		3			
CO2	_	_	-	-	_	_	-	_			-	3			
CO3	-	-	-	-	-	-	-	2	3	3	-	3			
CO4	-	-	-	-	-	-	-	3	3	3	-	3			
Avg	-	- - - - - - 2 2.7 3 - 2.75													

Unit-1: Phonetics (Contact Hours: 8)

Speech Mechanism, Introduction to English Speech Sounds and Phonetic Alphabets, Description of English Speech Sounds, Activities related to phonetics

Unit-2: Syntax (Contact Hours: 10)

Parts of Speech, Articles and Determiners, Prepositions , Conjunctions, Voice, Gerund, Infinitives and Participle, Activities Related to Syntax

Unit-3: Vocabulary Building (Contact Hours: 8)

Prefixes and suffixes, One Word Substitution, Standard Abbreviations, Synonyms, Antonyms, Homonyms, Homophones, Technical Jargons, Activities Related to Vocabulary

Unit-4:Basics of Composition (Contact Hours: 10)

Phrases, Clauses and sentences, Tenses, Verb Patterns, Punctuation and common Errors, Activities Related to Compostion

Text Books:

- 1. Essential English Grammar, Raymond and Murphy, Cambridge University Press.
- 2. English Phonetics for Indian Students, T. Balasubramanian, Trinity Press 2017

- 1. Practical English Usage. Michael Swan.OUP.1995.
- 2. English Grammar and Usage, R.P. Sinha, Oxford University Press, 2011.
- 3. English grammar, Richard A Hudson, Routledge 1998.
- 4. Course in Phonetics, Peter Ladefoged and Keith Jhonson, Cengage Learning 2014.
- 5. English Grammar and Composition, Wren and Martin, S.Chand 2020.

(Course	Code		Course Title							L	T	P	Credits
											2	0	0	2
A	SH-HU	M-107	A		J	Jnivers	al Hum	an Valu	es		CIE	SI	EE	Total
											40	6	0	100
Cour	se Out	comes										•		
CO1	Un	derstan	d the in	nportar	nce of va	lue, typ	es and	roles of	values	in persor	nal and s	ocietal	develop	ment.
CO2			d and a		rinciples	of inne	r harmo	ony to e	nhance	overall v	vell-bein	g and fo	oster ba	lanced
СОЗ		Understand principles of harmonious relationships to promote unity and cooperation within families, society and nature.												
CO4	·													
Cours	e Outc		CO) to	Progra	amme O	utcom				le 1: low	, 2: Med	ium, 3	: High)	
	PO1	PO2	PO3	PO	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	01 PSO2
604				4									_	
CO1	-	-	1	-	-	1	-	-	-	-	-	1		
CO2	-	-	-	-	-	1	-	-	1	-	-	1		
CO3	-	2 1 1 - 1 1 - 1												
CO4	-	-	1	-	-	1	1	2	1	1	1	1		
Avg	1.33 1 1 2 1 1 1													

Unit-1: Introduction to Value Education

Contact Hours: 6

Value Education - Definition, concept and need, the content and process of value education, basic guidelines for value education, Self-exploration as a means of value education, happiness and prosperity as parts of value education.

Unit-2: Harmony in the Human Being

Contact Hours: 6

Human being is more than just the body, harmony of the self ('I') with the body, understanding myself as co-existence of the self and the body, understanding needs of the self and the needs of the body, understanding the activities in the self and the activities in the body.

Unit-3: Harmony in the Family and Society and Harmony in the Contact Hours: 6 Nature

Family as a basic unit of human interaction and values in relationships; The basics for respect and today's crisis: affection, guidance, reverence, glory, gratitude and love; Comprehensive human goal: the five dimensions of human endeavor; Harmony in nature: the four orders in nature, the holistic perception of harmony in existence.

Unit-4: Social and Professional Ethics

Contact Hours: 6

The basics for ethical human conduct, defects in ethical human conduct, holistic alternative and universal order, universal human order and ethical conduct. Value based life and profession, professional ethics and right understanding, competence in professional ethics; Issues in professional ethics – the current scenario.

Practice Sessions for Students:

- **Unit-1:** To discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation.
- **Unit-2:** To discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking.
- Unit-3: To reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives. To discuss human being as cause of imbalance in nature.
- Unit-4: To explore ethical human conduct and steps of transition towards universal human order.

Textbooks:

- 1. A. N. Triparty, Human Values, New Age International Publishers, 2003.
- 2. Bajpai, B. L., Indian Ethos and Modern Management: Amalgam of the Best of the Ideas from the East and the West New Royal Book Co, Lucknow, Reprinted, 2004.

- 1. Gaur. R. R., Sangal R., Bagaria. G. P., A Foundation Course in Value Education, Excel Books, 2009.
- 2. I. C. Sharma. Ethical Philosophy of India, Nagin & Co., Jalandhar.

	Cours	e Code				Co	urse T	itle			L	T	P	Cr	edits
											3	0	0		3
I	BT- CS	E-101A			Pr	oblem	Solving	using '	'C"		CIE	S	EE	Т	otal
											40	6	50	1	.00
Cour	se Ou	tcomes	·												
CO1		Explain	the ele	ments o	f comp	uter sys	tem and	d variou	ıs probl	em-solvi	ng techn	iques			
CO2		Apply k	nowled	lge of C	operate	ors and	control	statem	ents to s	solve con	nputation	nal pr	oblen	ns	
CO3		Develop	and in	nplemei	nt funct	ions in	C to enl	nance c	ode mo	dularity a	and reusa	bility	7		
CO4		Analyz	•												
CO5										n and ana	lysis tasl	ks			
CO6		Design							•		<u> </u>				
										le 1: low	. 2: Med	lium.	3: H	igh)	
	ourse Outcomes (CO) to Programme Outcomes (PO) mapping (scale 1: lo										PO11	PO		PSO1	PSO2
CO1	3	1	2	-	-	-	-	-	1	-	-	-			
CO2	3	-	2	-	-	-	-	-	-	-	-	2		2	
CO3	3	2	2	2	1	1	1	1	1	1	-	2		2	
CO4	3	2 3 2 1 1 1 - 2 1 2										-		2	2
CO5	3	2	2	2	1	1	1	1	2	1	2	2		2	2
CO6	3	2	3	2	1	1	1	1	2	1	2	2		2	2
Avg	3	1.8	2.33	2	1	1	1	1	1.6	1	2	2		2	2

Unit-1: Introduction Contact Hours: 08

Overview of Computers: Block diagram and its description.

Computer Hardware: Printers, keyboard, mouse, storage devices.

Number systems: Binary, octal, hexadecimal number system, arithmetic of number systems.

Introduction to programming language: Different levels - high level language, assembly language, machine language; introduction to compiler, interpreter, debugger, linker, loader, and assembler.

Problem Analysis: Problem solving techniques, algorithms, pseudocode and flowchart representation.

Unit-2: Token, Operators and Decision making

Overview of C: Elements of C, data types, storage classes in C.

Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence and associativity of operators.

Contact Hours: 10

Input/output: Unformatted and formatted I/O function in C.

Control statements: If statement, switch statement, for, while, and do-while loop; break, continue, go to statements.

Unit-3: Handling Arrays and Functions in C Contact Hours: 08

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

Arrays: Definition, types, initialization, processing an array, string handling.

Unit-4: Pointers and Data files

Contact Hours: 10

Structure & Union: Definition, use of structure, passing structures to functions, typedef with structure, use of union.

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

File handling in C: Creating, opening and closing a file, I/O operations on files.

Textbooks:

- 1. Programming in ANSI C, E Balagurusamy, McGraw Hill Education (India) Private Limited, 8e, 2019.
- 2. Computer Basics and C Programming, Rajaraman V, Prentice Hall of India, 2007.
- 3. C Programming Language, 2e, Brian W. Kernighan, Dennis M. Ritchie, Pearson, 2015.

- 1. Computer Fundamentals and programming in C, Reema Thareja, 2e, Oxford University Press.
- 2. Computer Science: A Structured Programming Approach Using C, Behrouz A. Forouzan, Richard F. Gilbert, 3e, Cengage Learning, 2007.
- 3. Programming in C, Ashok Kamthane, 3e, Pearson Education India, 2011.
- 4. Let us C, Yashant Kanetker, 18e, BPB Publications, 2021.
- 5. Basic Computation & Programming with C, Subrata Saha, Subhodip Mukherjee, Cambridge Univ. Press, 2016.
- 6. Programming in C A Practical Approach, Ajay Mittal, Pearson, 2010.

(Course Code Course Title L T P Credits														
											0	0	2	1	
A	SH-PH	IY-174	·A	Mecha	nics and	d Mech	anical F Lab	Properti	es of M	aterials	CIE	S	EE	Tot	
							Lao				50	4	50	100	
Con	rse Oı	itcom	es								30		0	100	
C				skills to	measu	re fund	amenta	l physic	al const	tants like	accelera	tion d	ue to g	ravitv	
01					ough va										
C O2	Understand the principles of rotational motion, wave theory, and thermal properties by performing experiments on inertia, standing waves, and specific heat.														
C O3	Apply theoretical concepts to determine material properties such as rigidity, dielectric constant, and thermal conductivity through hands-on experiments.														
C O4	Enhance problem-solving and analytical abilities by interpreting experimental data and														
Cour	rse Ou	tcome	`	to Prog	gramme			O) maj	pping (scale 1:	low, 2: N			(igh)	
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	l PO	12	
C	01	3	3	2	2	1	-	-	-	-	-				
C	O2	3	3	2	3	2	-	-	-	-	-				
C	О3	3	2	2	3	2	-	-	-	-	-				
C	O4	3	2	2	2	2	-	-	-	-					
Avg 3 2.5 2 2.5 1.75															

1.	To determine acceleration due to gravity using a simple pendulum.
2.	To determine force required for rotation using centripetal Force Apparatus
3.	To determine acceleration due to gravity using bar pendulum
4.	To determine moment of inertia of a fly wheel.
5.	To demonstrate Earth's rotation using Foucault's pendulum.
6.	To Study standing waves in a stretched string.
7.	To study Young's Modulus by Searle's Method.
8.	To find Young's modulus by bending of beam
9.	To determine modulus of rigidity by Maxwell's needle.
10.	To study thermocouple.
11.	To determine the dielectric constant of different dielectric materials.
12.	To determine specific heat of materials.
13.	To determine thermal conductivity of a good conductor using Searle's method
14.	To Study the deflection of beams under various loads (bending of beam).
15.	To find the spring constant using Hook's law.

Note: Students must conduct a minimum of eight experiments covering the entire COs.

- 1. Practical Physics, G.L. Squires, Cambridge University Press, 4th Edition-2001.
- 2. Practical Physics, R.K. Shukla and Anchal Srivastava, New Age international (P) limited Publishers, 2006
- 2. Practical Physics, S. L. Arora, 2010, S. Chand.

Course	Code				Co	ourse T		L	T	P	Credits		
										0	0	2	1
BT-CSE	E-171A		(Lab ba						sing "C")	CIE	S	EE	Total
			(Euo ou	sea on m	e incory i	aoject .	100161111	orving u	sing c)	50	5	50	100
se Out	comes	•									•		
Imp	olement	progra	ms to fa	miliari	ze with	C progr	rammin	g.					
Dev	velop pi	rograms	based	on cont	rol state	ements.							
Dev	velop aı	nd utiliz	e funct	ions to	modula	rize cod	le and in	nprove	reusabili	ity.			
Imp													
Des													
Des													
1 2 -)
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSC	D1 PSO2
3	1	2	-	-	-	-	-	1	-	-	-	-	-
3	1	2	_	1	_	-	-	1	1	_	2	2	
3	2	2	2	1	1	1	-	1	1	-	2	2	-
2	2	2	2	1	1	1	1	2	1	2		-	2
3	2	3	2	1	1	1	1	2	1	2	_	2	2
3	2	3	2	1	1	1	1	2	1	2	2	2	2
3	2	3	2	1	1	1	1	2	2	2	2	2	2
3	1 66	2.5	2	1	1	1	1	1.5	1.2	2	2	2	2
3	1.00	2.3		1	1	1	1	1.3	1.4				4
	See Oute Imp Des Des PO1 3 3 3 3	See Outcomes Implement Develop produce Design productomes (PO1 PO2 3 1 3 2 3 2 3 2	Develop programs Develop and utiliz Implement data str Design programs of Design and impler e Outcomes (CO) to PO1 PO2 PO3 3 1 2 3 2 2 3 2 3 3 2 3 3 2 3	See Outcomes	See Outcomes Implement programs to familiarize	Problem So	Problem Solving us	Problem Solving using "C (Lab based on the theory subject – Problem Solving using "C (Lab based on total and using usi	Problem Solving using "C" Lab	Problem Solving using "C" Lab (Lab based on the theory subject – Problem Solving using "C") See Outcomes Implement programs to familiarize with C programming. Develop programs based on control statements. Develop and utilize functions to modularize code and improve reusability Implement data structures such as array, strings. Design programs exploring structures, union and pointers. Design and implement the file manipulation techniques. E Outcomes (CO) to Programme Outcomes (PO) mapping (scale 1: low PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3	Problem Solving using "C" Lab	Problem Solving using "C" Lab CIE S	Problem Solving using "C" Lab

- 1. Write a program to find area of a circle.
- 2. Write a program to swap two numbers with and without using a third variable.
- 3. Write a program to find the sum of individual digits of a positive integer.
- 4. Write a program to generate all the prime numbers between 1 and *n*, where *n* is the input given by the user.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program to find the roots of a quadratic equation.
- 7. Program to calculate the sum of first n natural numbers.

- 8. Write a program to print different pyramid patterns.
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive functions.
- 10. Write a program to implement user defined function.
- 11. Write a program to generate the first *n* terms of the Fibonacci sequence.
- 12. Write a program to calculate the following series without pow() function x x3/3! + x5/5! x7/7! ... xn/n!
- 13. Write a program for addition of two matrices.
- 14. Write a program for calculating transpose of a matrix.
- 15. Write a program for matrix multiplication by checking compatibility.
- 16. Write a program to concatenate two strings.
- 17. Write a program to implement Structure for storing information of a student.
- 18. Write a program to implement Union.
- 19. Write a program to print the element of array using pointers.
- 20. Write a program to print the elements of a structure using pointers.
- 21. Write a program to explore malloc and calloc.
- 22. Write a program to create a file.
- 23. Write a program which copies one file to another.
- 24. Write a program that counts the number of characters and number of lines in a text file.
- 25. Write a program that changes every 5th character of data file into uppercase.

Note: Students must conduct at least eighteen experiments covering all COs.

											Credits				
							0	0	3	1.5					
	BT-ME	-171A				Design	n Think	ing Lab			CIE	SI	EE	Total	
											50	5	0	100	
Cour	se Out	comes													
CO1	Uno	derstand	d the ma	ain idea	s and st	eps inv	olved in	design	thinkir	ıg.					
CO2	Тор	repare	the min	dset and	d discip	line to i	dentify	new so	urces o	f ideas.					
002				1 .	. 1 .	*41 4				• 1		, 1	1		
CO3		To create a space for the students with state of the art perspectives, ideas, concepts, and solutions using esign thinking.													
CO4		Apply design thinking ideas to improve everyday tasks and work challenges.													
	rse Outcomes (CO) to Programme Outcomes (PO) mapping (scale 1: low, 2: Medium, 3: High)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
CO2	1	2	2	2	1	2	2	2	2	2	2	2	2	1	
CO3	2	3	2	3	1	3	2	2	3	2	2	2	2	1	
003		3		3	1	3			3	2		L		1	
CO4	1	2	2	2	1	2	1	1	2	1	1	1	1	1	
Avg	1.25	1.25 2 1.75 2 1 2 1.5 1.5 2 1.5 1.5 1.5 1.5 1													

List of Experiments/Activities

The Foundation: Think About problems effectively	Contact Hours: 3
1. Identify the Problem- Reducing Plastic waste in college campuses.	
Building Empathy: Mapping User Insights	Contact Hours: 9
 Building Empathy (Qualitative) - Reducing Plastic Waste on College C Building Empathy (Quantitative) - Reducing Plastic Waste on College C Empathy Mapping - Reducing Plastic Waste on College Campuses 	-
Problem Definition	Contact Hours: 3
5. Defining the Problem: Reducing Plastic Waste on College Campuses	
Ideation: Guide to creative problem solving	Contact Hours: 6
6. Ideation (Divergent): Reducing Plastic Waste on College Campuses7. Ideation (Convergent): Reducing Plastic Waste on College Campuses	
Prototyping	Contact Hours: 3
8. Prototyping: Reducing Plastic Waste on College Campuses	
Testing and Refinement	Contact Hours: 3
9. Testing: Reducing Plastic Waste on College Campuses	
Case Studies	Contact Hours: 3

10. A detailed analysis of a design project that includes the design process, results, and key learnings

Note: Students must conduct at least eight experiments /activities covering all COs.

Text Books

- 1. Cross, Nigel. Design thinking: Understanding how designers think and work. Bloomsbury Publishing, 2023.
- 2. Soni, Pavan. Design your thinking: The mindsets, toolsets and skill sets for creative problem-solving. Penguin Random House India Private Limited, 2020.
- **3.** E Balagurusamy. Soni. Design Thinking: A beginner's perspective. The mindsets, toolsets and skill sets for creative problem-solving. McGraw Hill, 2024.
- 4. "Den Dekker, Teun. Design thinking, Taylor and Francis group, 2020

Reference Books

- 1. Pressman, Andrew. Design thinking: A guide to creative problem solving for everyone. Taylor and Francis group, 2018.
- 2. Brown, Tim. "Design thinking." Harvard business reviews 86, no. 6 (2008): 84.
- **3.** Lockwood, T. Design thinking: Integrating innovation, customer experience, and brand value. Simon and Schuster, 2010.

	Course Code Course Title L T P C											Credits		
											0 0		2	1
	BT-ME	-173A				Engine	ering W	orksho _l	p		CIE SEE			Total
			50	50 50		100								
Cour	Course Outcomes													
CO1	Know the workshop materials, theoretical background, and principles of various manufacturing													
	pro	processes used in different shops.												
CO2	Saf	ely use	vario	us mea	suring,	markin	ng, insp	ection,	checki	ng, han	d tools,	and m	achine	s used in
	diff	ferent sl	nops.											
002	-				1 1.	•			1: 00					
CO3		-								nt shops.				
CO4	Per	form ba	asic ope	rations	on a lat	he and	CNC m	achines						
Cours							_ `		_ `	le 1: low				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	01 PSO2
~~1														
CO1	1	-	-	-	-	-	-	-	-	-	-	-	1	1i
CO2	2	3	-	-	-	-	-	-	-	-	-	-	1	1
CO3	2	2	2										1	1
COS	2	2	2	-	-	-	-	-	-	-	-	-	1	1
CO4	2	3	2	-	-	-	-	-	-	-	-	3	1	1
Avg	1.75	1	2	_	_	_	_	_	_	_	_	3	1	1
1118	1.75	•	_										1	•

Welding Shop Contact Hours: 4

- 1. Practice deposition of proper weld beads with a variation of welding current for a given work piece and identify defects in it.
- 2. Prepare the following joints with metal arc welding:
 - Butt Joint.
 - Lap Join with fillet welds.

(Students are to study and know about types and principles of welding, effects of current and voltage in metal arc welding, IS-816:1969 (1998), welding defects, types of welding joints, and safety measures in the welding shop.)

Carpentry Shop Contact Hours: 4

- 3. Prepare a cross half lap joint.
- **4.** Prepare Mortise Tenon joint.

(Students are to study and know about different types of woods, joints, carpentry tools, and safety measures in the shop.)

Fitting Shop Contact Hours: 4

5. Perform metal removal, finishing operations, and prepare a threaded hole in the center of a square mild steel plate.

(Students are to study and know different metals and alloys used in workshops, e.g., mild steel, medium carbon steel, high carbon steel, high speed steel, cast iron, etc., different types of fits, IS 919(Part 1):1993, operation of drilling machines, use of taps for preparing internal threads, marking and measuring tools, and safety measures in the shop.)

Sheet-Metal Shop Contact Hours: 4

- **6.** Create development markings on the sheet metal to fabricate:
 - A funnel from the given G.I. sheet.
 - A tray, tool box, or electric panel box from the given G.I. sheet.

(Students are to study and know the development of the lateral surface of a solid on the sheet metal; different types of sheet metal joints; marking, measuring, cutting tools; and safety measures in the shop.)

Machine Shop Contact Hours: 4

- 7. Practice basic operations on the lathe, e.g., facing, plane turning, and step turning with the calculation of MRR.
- 8. Practice operations on lathe, e.g., taper turning, threading, knurling, and parting off.

(Students are to study and know various parts, accessories, and their functions in a lathe machine, operations performed on a lathe machine, and safety measures in the shop.)

CNC Shop Contact Hours: 4

9. Perform different operations on metal components using any CNC machines.

(Students are to study and know the main features, working parts of a CNC machine, and the G and M codes.)

Textbooks:

- 1. Raghuwanshi B. S., Workshop Technology Vol. I & II, Dhanpath Rai & Sons.
- 2. Rajender Singh, Introduction to Basic Manufacturing Processes and Workshop Technology, New Age International (P) Ltd., Publishers, 2006.
- 3. P. M. Agrawal, Dr. V. J. Patel, CNC Fundamentals and Programming, 2022, Charotar Publishing House Pvt. Ltd.
- 4. Jeyapoovan T. and Pranitha S., Engineering Practices Lab Manual, 3e, Vikas Pub., 2008.

Other References:

1. H. S. Bawa, Workshop Practices, Tata McGraw Hill.

	Course Code Course Title L T P C											Credits			
											0	0	2	1	
BT-ME-175A Idea Lab									Lab CIE SEE Tota						
						50	50		100						
	se Outcomes														
CO1	Lea	Learn the process of 3D scanning, its applications, and its limitations.													
CO2	Cre	Create a 3D model in CAD software and convert into an STL file.													
CO3	Pri	nt a 3D	model	with su	itable fi	lament	materia	l; identi	fy its d	efects an	d effects	of proc	ess vai	riables.	
CO4	Lea	arn the l	basics o	peration	ns and u	ise of a	CNC w	ood rou	ıter and	laser cu	tter.				
CO5	Un	derstan	d the ba	sics of	drone d	esign a	nd oper	ations.							
Cours	e Outc	omes (CO) to	Progra	mme O	utcom	es (PO)	mappi	ng (sca	le 1: low	, 2: Med	ium, 3:	High)	1	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	01 PSO2	
CO1	3	3	-	3	-	-	-	-	-	-	-	3	3	3	
CO2	3	3		2								3	3		
CO2	3	3	-	2	-	-	-	-	-	-	-	3	3	-	
CO3	3	3	-	3	-	-	-	-	-	-	-	2	-	2	
CO4	3	3 3 2 3 3 3 3								3					
CO5	3	3	3	2	-	-	-	-	-	-	-	3	2	3	
Avg	3	3	2.5	2.6	-	-	-	-	-	-	-	2.8	2.7	2.7	

3D Scanning Contact Hours: 4

1. Review the use of 3D scanning technology in part inspection and replication. Prepare a review report.

2. Evaluate the resolution and accuracy of 3D scanning technology under various settings and conditions.

3D Printing Contact Hours: 6

- 3. Create a 3D model in CAD software of an engineering component and convert it to STL format.
- 4. Explore the effect of STL file resolution and process parameters, e.g., layer thickness, orientation, and infill, on printing time using software.
- 5. Explore the mechanical properties, surface finish, and printability of different materials (e.g., PLA, ABS, PETG) used in 3D printing and prepare a brief report.
- 6. Identify the defects in 3D-printed components and prepare a brief report.

CNC Routing Contact Hours: 4

- 7.Explore how different materials (e.g., wood, plastics) respond to CNC routing processes in terms of cutting speed, tool wear, and finish quality.
 - 8. Produce shapes and contours using advanced CNC routing techniques.

Laser Cutting Contact Hours: 4

9.Investigate and optimize cutting parameters for different materials using a laser cutter.

Drones Contact Hours: 4

Course Code	Course Title	L	T	P	Credits

10. Explore the basics of a drone and identify the components of a working drone with specifications and understanding of their use.

Note: Students must conduct at least eight experiments covering all COs.

Text Books:

- 1. Gary C. Confalone, John Smits, Thomas Kinnare, 3D Scanning for Advanced Manufacturing, Design, and Construction, Wiley.
- 2. Amit Bandyopadhyay, Susmita Bose, Additive Manufacturing, 2e, CRC Press, 2020.
- 3. Fused Deposition Modeling Based 3D Printing, Editors: Harshit K. Dave, J. Paulo Davim, Springer.
- 4. CNC Router Essentials, Randy Johnson, George Vondriska, Cedar Lane Press.
- 5. Beginner's Guide to CNC Machining in Wood, Ralph Bagnall, Fox Chapel Publishing.
- 6. CO2 Laser Cutting, John Powell, Springer.
- 7. Dharna Nar, Dr. Radhika Kotecha, Dinesh Sain, Drone Technology for Beginners Learn | Build | Fly Drones, 2024, Drone School India and Ane Books Pvt. Ltd.

												0	0	0	
	BT-CE	-102A				Enviro	onment	CIE	SE	Е	Total				
					40	60)	100							
Cour	rse Outcomes														
CO1	The	The students will be able to understand the importance of natural resources.													
CO2	То	To learn the theoretical concepts of ecosystem and biodiversity conservation.													
CO3	Stu	dents w	ill be a	ble to u	nderstaı	ıd abou	t pollut	ion and	its cont	trol.					
CO4	The	studen	ts will	be able	to unde	rstand t	he basi	conce	pt of su	stainable	develop	ment.			
Cours	se Outc	omes (CO) to	Progra	mme O	utcom	es (PO)	mappi	ng (sca	le 1: low	, 2: Med	lium, 3:	High)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	-	2	-	-	-	-	2	2	-	-	-	-	-	-	
CO2	-	-	-	-	-	-	3	-	-	-	-	2	-	-	
CO3	-	-	3	-	-	-	3	3					-		
CO4	-	-	2	-	-	-	3	3	-		-	3	3		
Avg	-	2	2.5	-	-	-	2.7	2.5	-	-	-	2.6	-	-	

Content	
Unit-1:The multidisciplinary nature of environmental studies	(Contact Hours: 8)

Definition, Scope and Importance. Need for public awareness.

Natural Resources: Renewable and Non-Renewable Resources: Natural resources and associated problems. (a) Forest Resources: Use and over-exploitation, deforestation, case studies. (b) Energy Resources- Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies. (c) Land Resources- Land as a resource, land, degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyle.

Unit-2: Ecosystem and Biodiversity Concept (Contact Hours: 8)

Ecosystem: Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem. Food Chains, food webs.

Biodiversity and its conservation: Introduction, Definition: genetic, species and ecosystem diversity. Bio-geographical classification of India, Value of biodiversity, Hot spots of Biodiversity. Threats to biodiversity: Habitat loss, poaching of wild life, man-wildlife conflicts. Endangered and endemic species of India, Conservation of Biodiversity- In situ and Ex-Situ conservation of biodiversity.

Unit-3: Environmental Pollution (Contact Hours: 10)

Definition, Cause, effects and control measures of- (a) Air Pollution (b) Water Pollution (c) Soil Pollution (d) Marine Pollution. Visit to a local polluted site- Urban /Rural/Industrial/Agricultural. (Field work equal to 5 lecture hours).

Solid waste management- cause, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution, E- waste management, plastic waste.

Disaster management- Natural: floods, earthquake, cyclone and landslides etc. Man made Disaster: Fire, industrial pollution, nuclear disaster, biological Disaster, Disaster preparedness plans.

Unit-4: Social Issues and the Environment

(Contact Hours: 10)

From unsustainable to sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people: Its problems and concerns.

Environmental ethics-issues and possible solutions, Climate change, global warming, acid rain, ozone layer depletion, Case studies, Concept of green building, carbon foot printing.

Environment Protection Act (Air,water,wildlife,forest), Environment and human health, Role of Information Technology in Environment and Human Health, Case Studies. Emerging technologies for Environmental management.

Textbooks:

- 1. Environmental Studies- Deswal and Deswal. Dhanpat Rai & Co.
- 2. Environmental Science & Engineering Anandan, P. and Kumaravelan, R. 2009. ScitechPublications (India) Pvt. Ltd., India

- 3. Environmental Studies. Daniels Ranjit R. J. and Krishnaswamy. 2013. Wiley India.
- 4. Environmental Science-Botkin and Keller. 2012. Wiley, India.