B.Tech Computer Science and Engineering (Artificial Intelligence and Data Science) Scheme of Studies/Examination(w.e.f. Session 2022-23)

				Sem	ester V	/				
SNo.	Course No.	Subject	L:T: P	Hours /Week	Cred its	Examin	ation Scł	iedule		Duration of Exam (Hrs.)
						Major Test	Minor Test	Practical	Total	
1	PC-CS- AIDS- 301A	Theory of Computation	3:0:0	3	3	75	25	0	100	3
2	PC-CS- AIDS- 303A	Design and Analysis of Algorithms	3:0:0	3	3	75	25	0	100	3
3	ES-CS- AIDS- 305A	Computer Network	3:0:0	3	3	75	25	0	100	3
4	PC-CS- AIDS- 307A	Machine Learning with using Python	3:0:0	3	3	75	25	0	100	3
5	ES-CS- AIDS- 309A	Computer Architecture	3:0:0	3	3	75	25	0	100	3
6	PC-CS- AIDS-311A	Artificial Neural Networks	3:0:0	3	3	75	25	0	100	3
7	PC-CS- AIDS- 313LA	Artificial Neural Networks Lab	0:0:2	2	1	0	40	60	100	3
8	PC-CS- AIDS- 317LA	Design and Analysis of Algorithms Lab	0:0:2	2	1	0	40	60	100	3
9	PC-CS- AIDS- 315LA	Python Lab	0:0:2	2	1	0	40	60	100	3
		Total		24	21	450	270	180	900	
10	MC-904A	Energy Resources & Management	3:0:0	3	0	0	100	0	100	3
11	SIM- 301A*	Seminar on Summer Internship	2:0:0	2	0	0	50	0	50	-

*Note: SIM-301A is a mandatory credit less course in which the students will be evaluated for the summer internship undergone after fourth semester and students will be required to get passing marks to qualify.

PC-CS- AIDS- 301A		Theory of Computation											
Lecture	Tutori al	Tutori alPractical CreditCredit MajorMajor TestMinor TestTotal TestTime											
3	0	0	3	75	25	100	3 Hrs.						
Purpose	To unde contribu	To understand the challenges for Theoretical Computer Science and its contribution to other sciences											
			Course	Outcomes									
CO1	Students in auton	s are able to nata theory a	explain and forma	nd manipula l languages.	ate the differen	nt fundame	ental concepts						
CO2	Simplify languag methods	y automata a es, gramma s, minimizat	and context rs and auto ion.	tt-free gram	mars; Prove p rigorously for	roperties of mal mathe	of matical						
CO3	Differer its appli	ntiate and ma cations and	anipulate t transduce	formal desc r machines.	riptions of pus	sh down au	itomata,						
CO4	To unde Turing 1	erstand basic machine, the	propertie concepts	s of Turing of tractabil	machines and ity and decida	computin bility.	g with						

Introduction to Automata: Study and Central Concepts of Automata Theory, Applications of Finite Automata, An Introduction of Deterministic Finite Automata (DFA) and Non-Deterministic Finite Automata (NFA), Finite Automata with Epsilon (\in) Transitions.

Regular Expression and Languages: Regular Expressions (RE), Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws of Regular Expressions, Closure Properties of Regular Languages, RE to NFA, DFA Conversion and DFA to RE, Equivalence and Minimization of NFA and DFA automata.

Unit-II

Context free Grammars and Languages: Parse Trees, Context Sensitive Grammar, Context Free Grammar, Regular Grammar, Applications of Context Free Grammars, Ambiguity in Grammars and Languages. Closure Properties of CFL, Chomsky Theorem, Chomsky Hierarchy, Normal forms of context free grammars: Chomsky Normal Form, Greibach Normal Form.

Pumping Lemma: Introduction to Pumping Lemma, pumping lemma for context free languages, Applications of Pumping Lemma, Minimization of Finite Automata, and Recursive Language.

Unit-III

Mealey and Moore Machines: Definitions, Representation, Equivalence of Moore and Mealey Machines and its Designing.

Push Down Automata: Introduction of Push Down Automata (PDA), Language of PDA, Equivalence of PDA's and CFG's, Deterministic Push Down Automata, Designing of PDA, Applications of PDA.

Unit-IV

Introduction to Turing Machine: The Turing Machine, Programming Techniques for Turing Machine, Extensions of Turing Machine, Restricted Turing Machines, Universal Turing Machines and Designing of Turing Machines, Time and Tape Complexity Measures of Turing machines **Decidability:** Post's Correspondence Problem (PCP), Rice's Theorem, Decidability and Undecidability properties, P-NP class and completeness.

- 1. J.E.Hopcroft, R.Motwani and J.D.Ullman,"Introduction to Automata Theory Languages and computation", Pearson Education Asia,2001.
- 2. K.Krithivasan and R.Rama; Introduction to Formal Languages, Automata Theory and Computation; Pearson Education, 2009.
- 3. Peter Linz," An Introduction to Formal Language and Automata",4th Edition, Narosa Publishing house, 2006.
- 4. M.Sipser;Introduction to the Theory of Computation; Singapore: Brooks/ Cole, Thomson Learning,1997.
- 5. John.C. Martin,"Introduction to the Languages and the Theory of Computation", Third edition, Tata Mc Graw Hill, 2003.

PC-CS- AIDS- 303A		Design and Analysis of Algorithms											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0 0 3.0 75 25 100 3 Hrs.												
Purpose	To introduce advanced data structures and algorithms concepts involving their implementation for solving complex applications.												
			Course O	utcomes (CO)									
CO1	To introdu	uce the basic	c concepts	of Data Struct	tures and their a	nalysis.							
CO2	To study to Structures	To study the concept of Dynamic Programming and various advanced Data Structures.											
CO3	To introdu complexit	To introduce various Graph algorithms and concepts of Computational complexities.											
CO4	To study v	various Flov	v and Sort	ing Networks									

Unit 1: Introduction

Review: Elementary Data Structures, Algorithms and its complexity (Time and Space), Analyzing Algorithms, Asymptotic Notations, Priority Queue, Quick Sort.

Recurrence relation: Methods for solving recurrence (Substitution, Recursion tree, Master theorem), Strassen multiplication.

Unit 2: Advanced Design and analysis Techniques

Dynamic programming: Elements, Matrix-chain multiplication, longest common subsequence, **Greedy algorithms:** Elements, Activity- Selection problem, Huffman codes, Task scheduling problem, Travelling Salesman Problem.

Advanced data Structures: Binomial heaps, Fibonacci heaps, Splay Trees, Red-Black Trees.

Unit 3: Graph Algorithms

Review of graph algorithms: Traversal Methods (Depth first and Breadth first search), Topological sort, strongly connected components, Minimum spanning trees- Kruskal and Prims, Single source shortest paths, Relaxation, Dijkstras Algorithm, Bellman- Ford algorithm, Single source shortest paths for directed acyclic graphs, All pairs shortest paths- shortest paths and matrix multiplication, Floyd-Warshall algorithm.

Computational Complexity: Basic Concepts, Polynomial Vs Non-Polynomial Complexity, NP-hard and NP-complete classes.

Unit 4: Network and Sorting Algorithms

Flow and Sorting Networks Flow networks, Ford- Fulkerson method, Maximum Bipartite matching, Sorting Networks, Comparison network, the zero- One principle, Bitonic sorting network, Merging networks

- 1. Corman, Leiserson and Rivest: Introduction toAlgorithms,2/e,PHI.
- 2. Das Gupta: Algorithms, TMH.
- 3. Horowitz, Ellis and Sahni, Sartaj: Fundamentals of Computer Algorithms. Galgotia Publications.
- 4. Aho, Hopcroft and Ullman: The Design and Analyses of Computer Algorithms. Addison Wesley.
- 5. R. B. Patel: Expert Data Structures with C, Khanna Publications, Delhi, India, 2nd Edition

2004, ISBN 81-87325-07-0. R. B. Patel and M.M.S Rauthan: Expert Data Structures with C++, Khana Publications, Delhi ,India,2ndEdition 2004,ISBN 87522-03-8. 6.

ES-CS- AIDS- 305A	Computer Network											
Lecture	Tutorial	Tutorial Practical Credit Major Test Minor Test Total Time										
3	0 0 3 75 25 100 3 Hrs.											
Purpose	To introduce the architecture and layers of computer network, protocols used at											
	different layers.											
			Course	Outcomes (C O)							
CO1	To underst	and the basi	c concep	t of networking	ng, types, netw	orking top	ologies and					
	layered arc	layered architecture.										
CO2	To underst	To understand datalink layer and MAC sub-layer`										
CO3	To underst	and the netv	vork Lay	er functioning	5							
CO4	To underst	and the tran	sport lay	er and applica	tion layer oper	ration						

Introduction to Computer Networks: Data Communication System and its components, Data Flow, Computer network and its goals, Types of computer networks: LAN, MAN, WAN, Wireless and Wired networks, broadcast and point-to-point networks, Network topologies, protocols, interfaces and services, ISO-OSI reference model, TCP/IP architecture.

Physical Layer: Concept of Analog & Digital Signal, Bandwidth, Transmission Impairments: Attenuation, Distortion, Noise, Multiplexing: Frequency Division, Time Division, Wavelength Division, Transmission Media: Twisted pair, Coaxial cable, Fiber optics, Wireless transmission (radio, microwave, infrared), Switching: Circuit Switching, Message Switching, Packet Switching & comparisons, narrowband ISDN, broadband ISDN.

Unit-II

Datalink layer: Error Control, Types of errors, framing (character and bit stuffing), error detection & correction methods; Flow control; Protocols: Stop & wait ARQ, Go-Back- N ARQ, sliding window protocols, Selective repeat ARQ, HDLC;

Medium access sub layer: Point to point protocol, FDDI, token bus, token ring; Reservation, polling, Multiple access protocols: Pure ALOHA, Slotted ALOHA, CSMA, CSMA/CD, FDMA, TDMA, CDMA, LLC, Traditional Ethernet, fast Ethernet, Network devices-repeaters, hubs, switches, Bridges, Router, Gateway.

Unit-III

Network layer: Addressing: Internet address, sub-netting; Routing techniques, static vs. dynamic routing, routing table, DHCP, IEEE standards 802.x, Routing algorithms: shortest path algorithm, flooding, distance vector routing, link state routing; Protocols: ARP, RARP, IP, ICMP, IGMP, IPV6; Unicast and multicast routing protocols, ATM.

Unit-IV

Transport layer: Process to process delivery; UDP; TCP, RPC, Congestion control algorithm: Leaky bucket algorithm, Token bucket algorithm, choke packets; Quality of service: techniques to improve QoS.

Application layer: DNS; SMTP, SNMP, FTP, HTTP&WWW; Firewalls, Bluetooth, Email, S/MIME, IMAP

Network Security: Cryptography, user authentication, security protocols in internet, public key encryption algorithm, digital signatures.

Suggested Books:

٠

- 1. Behrouz A. Forouzan, "Data communication and Networking", Tata Mc Graw Hill, Fourth Edition, 2011.
- 2. Computer Networks,4th Edition, Pearson Education by Andrew S. Tanenbaum.
- 3. Larry L. Peterson, Peter S. Davie, "Computer Networks", Elsevier, Fifth Edition, 2012.
- 4. William Stallings, "Data and Computer Communication", Eighth Edition, Pearson Education, 2007.
- 5. James F. Kurose, Keith W. Ross, "Computer Networking: A Top–Down Approach Featuring the Internet", Pearson Education, 2005.

PC-CS- AIDS -307A	Machine Learning with using Python											
Lecture	Tutorial	TutorialPracticalCreditMajorMinorTotalTimeTestTestTestTestTestTest										
3	0	0	3	75	25	100	3 Hrs.					
Purpose	Introduction and implementation to Real-life examples of Machine learning using Python											
Course Outcomes-At the end of the course students will be able to:												
CO1	Understand basics of Python programming language.											
CO2	Explain the implementa	operation of o tion in Pythor	lifferent sup 1.	pervised and	unsupervised	d algorithms	and their					
CO3	Implement s learning alg	several cluster orithm to a ra	ring, classifing	ication and r c problems.	regression alg	orithms, and	apply a suitable					
CO4	Work on Re	ecommender S	Systems: Co	ontent-Based	and Collabo	rative Filterin	ng					
CO5	Use and An	alyze Popular	models: Tr	ain/Test Spl	it, Gradient I	Descent, and	Mean Squared					
	Error and pe	erform custon	n analysis									
CO6	Apply predion of a learning	ictions and sea g algorithm.	gmentation	on real-worl	d datasets. In	terpret the ou	utput and validity					

Python Basics, Data Structures and Fundamentals - First program, Types, Expressions and Variables, String Operations, Lists and Tuples Sets, Dictionaries, Conditions and Branching, Loops, Functions, Objects and Classes

Unit-II

Working with Data in Python and Introduction to Machine Learning - Reading files with open, writing files with open, loading data with Pandas, working with and Saving data with Pandas, Applications of Machine Learning, Supervised vs Unsupervised Learning, Python libraries suitable for Machine Learning

Unit-III

Regression, Classification and Unsupervised Learning- Linear Regression, Non-linear Regression, Model evaluation methods, K-Nearest Neighbor, Decision Trees, Logistic Regression, Support Vector Machines, Unsupervised Learning, K-Means Clustering, Hierarchical Clustering, Density-Based Clustering, Content-based recommender systems, Collaborative Filtering

Unit-IV

What is System ML? And Spark ML Context - Explain the purpose and the origin of System ML, List the alternatives to System ML, compare performances of System ML with the alternatives, Use ML Context to interact with System ML (in Scala), Describe and use a number of System ML algorithms.

- 1. Ethem Alpaydin, Introduction to Machine Learning, Second Edition.
- 2. Introduction to Machine Learning with Python: A Guide for Data Scientists 1st Edition by Andreas C.
- 3. Hands-On Machine Learning with Scikit- Learn and Tensor Flow: Concepts, Tools, and Techniques to Build Intelligent Systems 1st Edition by Aurélien Géron.

- 4. Stephen Marsland, Machine Learning: An Algorithmic Perspective.
- 5. Christopher M. Bishop, Pattern Recognition and Machine Learning.
- 6. Tom Mitchell, Machine Learning.

ES-CS- AIDS-309A	Computer Architecture										
Lecture	Tutorial Practical		Credit	Major Test	Minor Test	Total	Time				
3	0	0	3	75	25	100	3 Hrs.				
Purpose	Student w organizati systems.	Student will be able to understand the basic concepts of computer architecture and organization, and understand the key skills of constructing cost-effective computer systems.									
			Course O	utcomes (CO)							
CO1	Be famili	ar with the in	nternal org	anization and o	perations of a co	omputer.					
CO2	Be familia processor	Be familiar with the design trade-offs in designing and constructing a computer processor.									
CO3	Be aware	with the CP	U design ir	ncluding the RIS	SC/CISC archite	ctures.					
CO4	Be acquai interfacing	nted with the g standards f	e basic kno or I/O dev	wledge of I/O o ices.	devices and sele	ct the appro	opriate				

Data representation and Computer arithmetic: Introduction to Computer Systems, Organization and architecture, Von Neumann Architecture, evolution and computer generations; Fixed point representation of numbers, digital arithmetic algorithms for Addition, Subtraction, Multiplication using Booth's algorithm and Division using restoring and non-restoring algorithms. Floating point representation with IEEE standards and its arithmetic operations.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory.

Unit-II

Basic Computer organization and Design: Instruction codes, stored program organization, computer registers and common bus system, computer instructions, timing and control, instruction cycle: Fetch and Decode, Register reference instructions; Memory reference instructions. Input, output and Interrupt: configuration, instructions, Program interrupt, Interrupt cycle, Micro programmed Control organization, Control Memory, address sequencing, Microprogram Example, micro instruction format, Horizontal Vs Vertical micro-programming, design of control Unit, microprogram sequencer, Hardwired v/s Micro-programmed Control Unit.

Unit-III

Central Processing Unit: General register organization, stack organization, instruction formats (Zero, One, Two and Three Address Instruction), addressing modes, Data transfer and manipulation, Program control. CISC and RISC: features and comparison. Pipeline and vector Processing, Parallel Processing, Flynn's taxonomy, Pipelining, Instruction Pipeline, Basics of vector processing and Array Processors.

Unit-IV

Input-output organization: I/O interface. I/O Bus and interface modules, I/O versus Memory Bus. Asynchronous data transfer: Strobe control, Handshaking, Asynchronous serial transfer. Modes of Transfer: Programmed I/O, Interrupt driven I/O, Priority interrupt; Daisy chaining, Parallel Priority interrupt. Direct memory Access, DMA controller and transfer. Input output Processor, CPU-IOP communication, Serial communication.

- 1. William Stallings, "Computer Organization and Architecture–Designing for Performance", Sixth Edition, Pearson Education, 2003.
- 2. Morris Mano, M., "Computer System Architecture,"3/e, Pearson Education,2005.
- 3. John P. Hayes, "Computer Architecture and Organization,"3/e, TMH,1998.

- 4. David A. Patterson and John L. Hennessy, "Computer Organization and Design: The Hardware / Software interface", Third Edition, Elsevier, 2005.
- 5. V.P.Heuring, H.F.Jordan, "Computer Systems Design and Architecture", Second Edition, Pearson Education, 2004.
- 6. Carl Hamacher, Zvonko Vranesic and Safwat Zaky," Computer Organization", 5th Edition, TMH, 2002.

PC-CS-											
AIDS-			Artificia	al Neural Netw	vorks						
311A											
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time				
				Test	Test						
3	0	0	3	75	25	100	3 Hrs.				
Purpose	The objective of this course is to provide students with a basic understanding of the										
	Fundamentals and applications of artificial neural networks.										
	Cours	e Outcomes-	At the end of th	e course stude	ents will be al	ole to:					
CO1	Understand	basic principl	es of neuron stru	ucture.							
CO2	Understand	and explain th	ne mathematical	foundations of	neural netwo	rk models					
CO3	Understand	and apply the	methods of trai	ning neural net	works;						
CO4	Implement a	and analyze di	fferent algorithm	ms for learning.							
CO5	Formalize th	ne problem to	solve it by using	g a neural netw	ork. Via imple	ementation of	these				
	techniques i	n MATLAB.									

Introduction and ANN Structure: Biological neurons and artificial neurons. Model of an ANN. Activation functions used in ANNs. Typical classes of network architectures. Mathematical Foundations and Learning mechanisms: Re-visiting vector and matrix algebra. State-space concepts. Concepts of optimization. Error -correction learning. Memory-based learning. Hebbian learning. Competitive learning. Building a simple ANN in python.

Unit-II

Feedforward ANN: Structures of Multi-layer feedforward networks with implementation in Python. Back propagation algorithm. Back propagation—training and convergence. Functional approximation with back propagation. Practical and design issues of back propagation learning.

Radial Basis Function Networks: Pattern separability and interpolation. Regularization Theory. Regularization and RBF networks. RBF network design and training. Approximation properties of RBF.

Unit-III

Associative memories network-Linear Association, Pattern Association, Hebb and Delta rule for pattern association with its implementation in Python, Extended delta rule, Recurrent Auto associative memory: retrieval algorithm, storage algorithm; Bi-directional associative memory, Architecture, Association encoding & decoding, Stability.

Unit-IV

Self-organizing networks- unsupervised learning of clusters, winner-take-all learning, recall mode, Initialization of weights, separability limitations. Design SOM in python.

Perceptron Network- Perceptron neural algorithm with its implementation in Python, Multi-Layer perceptron, Adaline Network, Madaline network

Neural network projects with MATLAB: Brain maker to improve Hospital treatment using ADALINE, Breast cancer treatment using ART Network face recognition using BPN, data compression using BPN.

- 1. Simon Haykin; Neural Networks: A Comprehensive Foundation; Prentice Hall; ISBN-13:978-0131471399;2008.
- 2. Dan Simon; Evolutionary Optimization Algorithms; Wiley; ISBN-13:978-0470937419;2013.
- 3. Daniel Graupe; Principles of Artificial Neural Networks; World Scientific Publishing Company; ISBN-13: 978-9814522731; 2013.

PC-CS-												
AIDS-			Artif	icial Neural	Networks La	b						
313LA												
Lecture	TutorialPracticalCreditMinorPracticalTotalTime											
				Test								
0	0	2	1	40	60	100	3 Hrs.					
Purpose	To gain a broad understanding of implementing neural networks using MATLAB											
	Cour	rse Outcome	s -At the end	d of this cou	rse students v	will be able t	0:					
CO1	Implement c	ognitive task	s and proces	sing of senso	rial data such	as vision, im	age- And speech					
	recognition,	control, robo	tics, expert s	systems.								
CO2	Design singl	le and multi-l	ayer feed-for	rward neural	networks							
CO3	Understand and implement supervised and unsupervised learning concepts & Understand											
	unsupervised	d learning usi	ng Kohonen	networks								
CO4	Implement tr	raining of rec	urrent Hopfi	ield networks	and associati	ve memory c	oncepts.					

List of Practicals

- 1. Write a MATLAB program to plot a few activation functions that are being used in neural networks.
- 2. Generate AND NOT function using Mc Culloch-Pitts neural net by a MATLAB program.
- 3. Generate XOR function using Mc Culloch-Pitts neuron.
- 4. Write a MATLAB program for perceptron net for an AND function with bipolar inputs and targets.
- 5. With a suitable examples imulate the perceptron learning network and separate the boundaries. Plot the points assumed in the respective quadrants using different symbols for identification.
- 6. With a suitable example demonstrate the perceptron learning law with its decision regions using MATLAB. Give the output in graphical form.
- 7. Write a MATLAB program to show Back Propagation Network for XOR function with Binary Input and Output.
- 8. Write a MATLAB program to show Back Propagation Network for XOR function with Bipolar Input and Output.
- 9. Write a MATLAB program to recognize the number 0, 1, 2, 39. A 5 * 3 matrix forms the numbers. For any valid point it is taken as 1 and invalid point it is taken as 0. The net has to be trained to recognize all the numbers and when the test data is given, the network has to recognize the particular numbers.
- 10. Write a MATLAB program to illustrate ART neural network.

PC-CS- AIDS- 317L	A	Design and Analysis of Algorithms Lab										
Lecture	Tutori al	Practical	Credit	Credit Minor Test		Total	Time					
0	0	2	1	40	60	100	3 Hrs.					
Purpose	The stu- with the power.	The student should be made to Learn the algorithm analysis techniques, become familiar with the different algorithm design techniques and understand the limitations of Algorithm power.										
			Course O	utcomes (CO)								
CO1	The student	t should be ab	le to Design al	gorithms for va	arious comput	ing problems.						
CO2	The student	t should be ab	le to Analyse t	the time and spa	ace complexit	y of algorithm	iS.					
CO3	The student given probl	t should be abl em.	le to Critically	analyse the dif	ferent algorit	nm design tech	iniques for a					
CO4	The student	t should be ab	e to Modify e	xisting algorith	ms to improv	e efficiency.						

LIST OF PRACTICALS

- 1. Sort a given set of elements using the Quick sort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
- 2. Using Open, implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
- 3. a. Obtain the Topological ordering of vertices in a given digraph.
- b. Compute the transitive closure of a given directed graph using Warshall's algorithm.
- 4. Implement 0/1 Knapsack problem using Dynamic Programming.
- 5. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.
- 6. Find Minimum Cost Spanning Tree of a given undirected graph using Kristal's algorithm.
- 7. a. Print all the nodes reachable from a given starting node in a digraph using BFS method.b. Check whether a given graph is connected or not using DFS method.
- 8. Find a subset of a given set $S = \{sl, s2, ..., sn\}$ of n positive integers whose sum is equal to a given positive integer d. For example, if $S = \{1, 2, 5, 6, 8\}$ and d = 9 there are two solutions $\{1, 2, 6\}$ and $\{1, 8\}$. A suitable message is to be displayed if the given problem instance doesn't have a solution.
- 9. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and then solve the same problem instance using any approximation algorithm and determine the error in the approximation.
- 10. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.
- 11. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm. Parallelize this algorithm, implement it using Open and determine the speed-up achieved.
- 12. Implement N Queen's problem using Back Tracking.
- 13. Use divides and conquers method to recursively implement Binary Search.

PC-CS- AIDS- 315LA	Python Lab										
Lecture	Tutorial	Practical	Credit	Minor Test	Practical	Total	Time				
0	0	2	1	40	60	100	3 Hrs.				
Purpose		To implement the concepts of Python and its advanced functions.									
	Course Out	tcomes-At tl	ne end of t	he course st	udents will be	able to:					
C01	Implemen	t Python pro	gramming	basics and p	aradigm.						
CO2	Implemen	t python loo	ping, contr	rol statements	s, string manip	ulations and	functions.				
CO3	Implemen	t Data Analy	vsis & visu	alization–usi	ng NumPy, pa	nda, matplot	lib etc.				
CO4	Implemen	t Object Ori	ented Skill	s in Python.							

LIST OF PRACTICALS

1. Write and run a Python program that outputs the value of each of the following expressions:

5.0/9.0, 5.0/9, 5/9.0, 5/9,9.0/5.0, 9.0/5, 9/5.0, 9/5

Based on your results, what is the rule for arithmetic operators when integers and floating-point numbers are used?

2. Write and run a Python program that asks the user for a temperature in Celsius and converts and outputs the temperature in Fahrenheit. (Use the formula given in the example above and solve for temp F in terms of temp C.)

3. Here is an algorithm to print out n!(n factorial) from 0!to 19!:

1. Setf =1

2. Setn = 0

- 3. Repeat the following 20 times:
- a. Output n, "! =", f
- b. Add 1 to n
- c. Multiply f by n

Using a for loop, write and run a Python program for this algorithm.

3(a). Modify the program above using a while loop so it prints out all of the factorial values that are less than 1 billion.

3(b).Modify the first program so it finds the minimum in the array instead of the maximum.

3(c).(Harder)Modify the first program so that it finds the **index** of the maximum in the array rather than the maximum itself.

4. Draw the Target symbol (a set of concentric Squares, alternating red and white) in a graphics window that is 200 pixels wide by 200 pixels high. Hint: Draw the largest circle first in red, then draw the next smaller circle in white, then draw the next smaller circle in red. Graphical objects drawn later appear "on top of" graphical objects drawn earlier

5. Try entering the following literal values at the prompt.(Hit ENTER after each)

-5

-4.2

4.5

4.14

0.90

Some thing odd should occur. Describe it on paper.

• Reading from a CSV file of the given data using pandas library.

6. For the given data, plot the scatter matrix for males only, and for females only. Do you think that the2 sub-populations correspond to gender?

• For the given data, using python environment, apply,1-samplet-test: testing the value of a population mean.

For the given data, using python environment, apply,2-samplet-test: testing for difference across populations.

7. Generate simulated data from python, apply simple linear and multiple linear regression analysis.

Retrieve the estimated parameters from the model above. Hint: use tab-completion to find the relevant attribute.

8. Going back to the brain size + IQ data, test if the VIQ of male and female are different after removing the effect of brain size, height and weight.

9. Using matplot lib, visualize the simulated data with suitable statistical measures.

10. Create a 5 X 5 rectangle whose top left corner is at (row*5, col*5). (Where is the bottom right corner?) If the sum of the *row* and *col* numbers is even, set the fill color of the rectangle to white, otherwise set it to black. Then draw the rectangle.

MC-904A	Energy Resources & Management											
Lecture	Tutorial Practical Credit Major Test Minor Test Total T											
3	0	0	0	0	100	100	3 Hrs.					
Purpose	To make the students conversant with the basic concepts and conversion of various form of Energy											
	COURSE OUTCOMES											
CO1	An overviev	v about Energ	y Resources	s, Conventional	and Non-convention	onal Sourc	es.					
CO2	Understand	the Layout ar	nd working o	of Conventional	Power Plants.							
CO3	Understand	the Layout ar	nd working o	of Non-Convent	ional Power Plants	5.						
CO4	To understa developmen	nd the Energy t and Energy	/ Manageme Scenario in	ent, Audit and ta India.	riffs, Role of Ener	gy in Econ	omic					

UNIT-I

Introduction: Types of energy, Conversion of various forms of energy, Conventional and Non-conventional sources, Need for Non-Conventional Energy based power generation.

UNIT-II

Conventional Energy sources: Types of Conventional Energy sources, Selection of site, working of Thermal, Hydro, Nuclear and Diesel power plants and their schematic diagrams & their comparative advantages/ disadvantages.

UNIT-III

Non-Conventional Energy sources: Types of Non-Conventional Energy sources, Basic principle, site selection of Solar energy power plant, photovoltaic technologies, PV Systems and their components, Wind energy power plant, Bio energy plants, Geothermal energy plants and Tidal energy plants.

UNIT-IV

Energy Management: General Principles of Energy Management, Energy Management Strategy, Modern trends and developments towards Computerizations of Power System. **Energy Audit:** Need, Types, Methodology and Approach.

Energy Scenario: Lay out of power system, Role of Energy in Economic development, energy demand, availability and consumption, Indian energy scenario, long term energy scenario, energy sector reforms in India, energy strategy for the future.

- 1. Energy Studies-Wiley Dream Tech India.
- 2. Non-conventional energy resources-Shobhnath Singh, Pearson.
- 3. Electrical Power Systems: Soni, Gupta, Bhatnagar–Dhanpat Rai & Sons.
- 4. NEDCAP: Non-Conventional Energy GuideLines.
- 5. Non-conventional energy sources: G.D.Roy.
- 6. Non-Conventional energy resources: B H Khan– Mc Graw Hill.
- 7. Applied Solar Energy: Meinel AB-Addison Wesley Publications.
- 8. Direct Energy Conversion George: Sutton-McGraw.